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Abstract

The thalamus has long been suspected to have an important role in cogni-
tion, yet recent theories have favored a more corticocentric view. According
to this view, the thalamus is an excitatory feedforward relay to or between
cortical regions, and cognitively relevant computations are exclusively corti-
cal. Here, we review anatomical, physiological, and behavioral studies along
evolutionary and theoretical dimensions, arguing for essential and unique
thalamic computations in cognition. Considering their architectural features
as well as their ability to initiate, sustain, and switch cortical activity, thalamic
circuits appear uniquely suited for computing contextual signals that rapidly
reconfigure task-relevant cortical representations. We introduce a frame-
work that formalizes this notion, show its consistency with several findings,
and discuss its prediction of thalamic roles in perceptual inference and be-
havioral flexibility. Overall, our framework emphasizes an expanded view
of the thalamus in cognitive computations and provides a roadmap to test
several of its theoretical and experimental predictions.
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INTRODUCTION

Among the many marvels of evolution, the human brain stands out as an exceptional triumph.
With a mass three times that of our closest primate relative, it has given rise to Sun Tzu’s Art
of War, Isaac Newton’s Principia Mathematica, Wolfgang Amadeus Mozart’s Requiem, and Steve
Jobs’s iPhone. When one contemplates the forces that drive human civilization, it becomes clear
that our cognitive capacity, rather than sensory acuity or motor strength, is the secret to our
species’ success. As such, understanding which brain attributes are most relevant for cognition
has been a major fascination of humanity, with pioneering investigations documented by Galen
of Pergamum nearly two thousand years ago (Hellier 2014). Galen contended that the forebrain
is associated with cognition, whereas the peripheral nerves are tied to lower-level motor output
(Hellier 2014). He coined the term thalamus to refer to the brain’s inner chamber that connected
the animal spirit with the cerebral nerves. His thalamus, however, is most likely what we would call
the third ventricle today, rather than the group of diencephalic gray matter nuclei we collectively
refer to by that name ( Jones 2007).

Despite his error, Galen’s intuition about the forebrain being tied most closely to cognitive
capacity has withstood the test of time. Here, we operationally define cognition as the flexible
control of sensorimotor transformations, which determine the capacity and range of adaptive
behavioral output (Miller & Cohen 2001). The relationship between forebrain evolution and cog-
nitive capacity is evident when comparing how skillfully a frog can catch a fly, with its inflexibility
in modifying that behavior depending on the kind of fly it is catching or where the hunt takes place
(Matesz et al. 2014, Ramsay et al. 2013). This type of behavioral flexibility, however, is evident
in birds and mammals (Emery & Clayton 2004), which unlike their common reptilian ancestor
(Striedter 2006) have an expanded forebrain. In fact, the intrinsic architecture of the midbrain
and hindbrain is conserved across the vertebrate lineage, with the progressive expansion of the
forebrain being the biggest differentiator (Striedter 2006) (Figure 1a), suggesting a relationship
between forebrain size and cognitive capacity.

But what is it about the forebrain that gives rise to cognitive capacity? The mammalian forebrain
is composed of the telencephalon (cortex and basal ganglia) and diencephalon (thalamus and
hypothalamus). The hypothalamus is conserved across the vertebrate lineage, with little expansion
or variation throughout evolution (Xie & Dorsky 2017). Conversely, the cortex, basal ganglia, and
thalamus show substantial expansion and variation (Butler & Hodos 2005) (Figure 1b); therefore,
they are thought to be more closely tied to cognitive capacity (Lefebvre et al. 2004). From the
perspective of circuits in the brainstem and spinal cord, forebrain output would adaptively modify
their sensorimotor transformations, providing a basis for behavioral flexibility.

The contribution of the forebrain to behavioral flexibility is nonuniform, dictated by distinct
regional architectures that impose local computational constraints. Specifically, both parts of the
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Figure 1
Comparable organization of adult telencephalon of reptiles, birds, and mammals (rodent). (a) Top view, (b) sagittal view, and (c) coronal
view. Note the expansion in the size of the pallium (Pal), striatum (Stria), and thalamus (Thal) from reptile to mammal, which correlates
with an increase in cognitive capability. Adapted with permission from Jarvis et al. (2005) and Kalman (2009). Abbreviations: Cbl,
cerebellum; DVR; dorsal ventricular ridge; HB, habenula; MB, midbrain; MP, medial pallium; Olf, olfactory bulb; Pa, pallidum; Tel,
telencephalon; Teo, optic tectum. Wulst and hyperpallium are synonymous.

telencephalon—the cortex and the basal ganglia—exhibit local recurrent connections, with the
former dominated by excitatory connections and the latter by inhibitory ones (Bolam & Bevan
2001, Douglas & Martin 2004). By contrast, the thalamus is composed primarily of excitatory
neurons that show no local recurrent connections ( Jones 2007). These distinct anatomical features
lead to differential capacities to generate and maintain local internal states over time. By coupling
these states to motor outputs in the brainstem and spinal cord, the telencephalon can adaptively
modulate behavior (Bastos et al. 2012, Harris & Shepherd 2015).
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So, does the thalamus contribute to cognition? The answer is an unequivocal yes, and here
we review experimental data that support this notion. Our view substantially diverges from the
dominant view of the thalamus as a relay of sensory information to the cerebral cortex (Guillery &
Sherman 2002). As we explain below, this view is derived from how a highly specialized thalamic
circuit, the lateral geniculate nucleus (LGN), appears to operate in visual processing. Within this
feedforward model of vision, the LGN serves as a relay of retinal inputs to the striate cortex, and
behaviorally relevant object features are extracted through a hierarchically organized set of com-
putations implemented by extrastriate areas (DiCarlo et al. 2012, Felleman & Van Essen 1991).
This process is ultimately thought to result in highly specialized cortical responses to particular
objects (e.g., faces, cars, and landscapes) (Orban 2008, Yamins & DiCarlo 2016). As we argue in
subsequent sections, this purely feedforward cortico-cortical model is unable to account for the
flexibility by which objects are categorized or how an object is inferred when sensory inputs are
ambiguous (den Ouden et al. 2012, Lee & Mumford 2003, Rohe & Noppeney 2015). In addition,
the diversity of input-output patterns across the mammalian thalamus makes many of its circuits
unsuitable for simply relaying information. Therefore, the LGN may be the exception rather
than the rule, with the rest of the thalamus exhibiting diverse functions relevant to cognition.

STRUCTURAL DETERMINANTS OF THALAMIC COMPUTATIONS:
AN EVOLUTIONARY PERSPECTIVE

In mammals, the thalamus is grossly divided into four sections: an anterior group (anteromedial,
anterolateral, anterodorsal, and laterodorsal nuclei); a medial division composed of the midline
group (paratenial, paraventricular, and centromedian), an intralaminar group (centrolateral, cen-
tromedial, and parafascicular), and the mediodorsal nucleus (MD); a lateral division containing
the ventroanterior/ventrolateral (VL) group, the ventrobasal (VB) complex, and the ventrome-
dial nucleus; and a posterior group containing the posteromedial nucleus, the lateral posterior
nucleus, the pulvinar, and the medial geniculate body (MGB) and lateral geniculate nuclei (LGN)
(Figure 2). These divisions are based on a combination of gross anatomical features such as their
relation to the internal medullary lamina and their cytoarchitectural staining (Bold et al. 1984).
Dividing the thalamus in this manner may not generate corresponding functional divisions; the
lack of thalamic lateral connectivity coupled with the diversity of inputs and outputs seen within
each nucleus suggests that function is nonhomogeneous along a nuclear dimension. Other classi-
fication schemes have grouped nuclei on the basis of a predominant type of input (sensory, motor,
or limbic) (Vertes et al. 2015), relative input origin and strength (first order versus higher order),
or output type (core versus matrix) ( Jones 1998, 2002).

In addition to the thalamus’s unique structural features, its lack of single-cell connectivity data
makes it difficult to find dimensions along which thalamic functions are clustered (Phillips et al.
2017). Until more experimental data are available, we propose that a reasonable way to identify
functional groups is to focus on individual thalamic microcircuits, each of which is composed of a
group of neurons that share common input features (origin, strength, and degree of convergence),
output features (destination, strength, and degree of divergence), and inhibition features (origin
and strength). Therefore, individual nuclei may contain multiple types of thalamic microcircuits,
with functional parallels potentially arising in a distributed manner across several nuclei (see
Figure 3).

So, what could the most functionally relevant anatomical features be? We think that an
evolutionary perspective is useful here because it provides functional constraints. In reptiles,
the thalamus does not receive substantial descending projections from the cortex (Pritz 1995).
Instead, it provides two types of ascending telencephalic inputs: one from the roof of the midbrain
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(collothalamic nuclei) mainly to the striatum, and another from the retina (LGN homolog),
trigeminal nucleus, and lateral spinothalamic tract (called lemnothalamic nuclei; mainly the nu-
cleus dorsolateralis) to the dorsal cortex (Butler 2008, 2009; Molnár & Butler 2002) (Figure 3a).
Parallels with mammalian thalamic organization can be broadly observed. For example, the
LP/pulvinar and the LGN have collothalamic and lemnothalamic origins, respectively (Grant
et al. 2012). Interestingly, the MGB and LGN, which are generally classified together as core,
sensory, or first-order nuclei, do not appear to share a common evolutionary origin.
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Figure 2 (Figure appears on preceding page)

Organization of the thalamic areas of the (a) macaque (adapted from http://brainmaps.org/index.php) and (b) mouse [redrawn from
Paxinos & Franklin (2004) with permission from Academic Press]. Areas are color coded according to their connections with the
sensory, motor, and limbic systems (Vertes et al. 2015). Abbreviations: A, anterior; AD, anterodorsal; AM, anteromedial; AV,
anteroventral; CA, caudate nucleus; CC, corpus callosum; CL, centrolateral; CM, centromedial; F, fornix of hippocampus; fr, fasciculus
retroflexus; IAD, interanterodorsal thalamic nucleus; IAM, interanteromedial thalamic nucleus; IC, internal capsule; LD, laterodorsal;
LDVL, ventromedial part of the laterodorsal nucleus; LGN, lateral geniculate nucleus; LH, lateral habenula; LP, lateroposterior;
LPLR, laterorostral part of the lateral posterior nucleus; LPMR, mediorostral part of the lateral posterior nucleus; M, medial; MD,
mediodorsal nucleus; MGB, medial geniculate body; mt, mammillothalamic tract; OPC, oval paracentral thalamic nucleus; P, posterior;
Pa, paraventricular nucleus; Pc, paracentral nucleus; PD, posterodorsal nucleus of medial geniculate complex; Pf, parafascicular
thalamic nucleus; Po, posteromedial; Pul, pulvinar; Rh, rhomboid nucleus; sm, paraventricular nucleus of the thalamus; STr, strial
terminalis; Sub, submedius thalamic nucleus; TRN, thalamic reticular nucleus; VA, ventroanterior; VL, ventrolateral; VLa, anterior
ventrolateral; VLp, posterior ventrolateral; VM, ventromedial; VPL, ventral posterolateral nucleus; ZI, zona incerta.

An important change that occurred during the transition from reptiles to mammals is the rise
of not only a six-layered cortex but also functional specialization and topographical maps across
the cortex (Montagnini & Treves 2003). The reptilian medial, dorsal, and lateral cortices are
multimodal areas (Naumann et al. 2015) with weak responses to visual inputs that are devoid of
retinotopy (Aboitiz et al. 2002). Therefore, the notion that the reptilian thalamus relays sensory
inputs to its cortex, as the mammalian geniculate does to the primary visual cortex (V1), is unlikely
to be accurate. Instead, it appears that the reptilian thalamus may provide a modulatory cortical
input informative of broad changes in a sensorimotor context. On the basis of the structural
diversity of mammalian thalamic axonal outputs (Figure 3b), similar thalamic effects on cortical
function in the mammalian brain are likely to be widespread.

Another evolutionary adaptation that accompanied the appearance of a specialized mammalian
sensory cortex is a change in the density of thalamic terminals in the cortex. These terminals can
range from being highly restricted to a patch in layer 4 (L4) (e.g., LGN axons in V1) (Usrey et al.
1992) to being highly diffuse, covering large swaths of multiple cortical areas (e.g., MD axons across
L2/3) (Kuramoto et al. 2017). Multiple intermediate varieties, which provide an individual thalamic
neuron the ability to exert combinatorial effects on a single or multiple cortical targets, have also
been observed. Thalamostriatal projections have similar diversity (Unzai et al. 2017). The dense
and focal projections characteristic of certain thalamic neurons (e.g., magno- and parvocellular
neurons of the primate LGN) (Blasdel & Lund 1983, Livingstone & Hubel 1988) are likely more
recent evolutionary adaptations that function to convey specialized sensory information, whereas
diffuse thalamocortical terminals convey more abstract contextual information. Additionally, an-
other critical evolutionary specialization in mammals is the invasion of the thalamus by descending
cortical input, a feature absent in reptiles (Pritz 1995). These terminals arise from corticothalamic
neurons located within the two major infragranular layers (L5 and L6), which exhibit divergent fea-
tures at multiple scales. For instance, whereas all thalamic territories receive L6 inputs, only a subset
receives L5 inputs (Rouiller & Welker 2000). In fact, the group of nuclei collectively called primary
sensory (LGN, MGB, VB) is entirely devoid of L5 inputs. Although inputs from L6 are numeri-
cally abundant, they utilize small terminals (<1 µm) to impinge on the distal dendrites of thalamic
neurons, predominantly through single synaptic contacts (Crandall et al. 2015). As a consequence,
L6 inputs onto thalamic neurons, which have been studied mostly in sensory systems, have minimal
roles in shaping thalamic neuronal receptive fields (RFs). In contrast, L5 inputs utilize terminals of
varying sizes, some are similar to the >4-µm giant subcortical inputs (e.g., retinal inputs to LGN)
with multiple synaptic contacts, while others approach the size of L6 terminals. These smaller L5
terminals exhibit a higher number of mitochondria and synaptic vesicles than do L6 terminals,
suggesting that they are more effective at supporting synaptic transmission onto their thalamic
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targets (Rovo et al. 2012). We hypothesize that the diversity of L5 inputs enables thalamic RF
diversity; by exhibiting little convergence, giant L5 inputs would impart cortical-like RFs on some
neurons, as experimentally observed in areas of the posteromedial and lateral pulvinar (Chalupa &
Werner 2003, Curry 1972, Zhou et al. 2016) where somatotopy and retinotopy are preserved. In
contrast, smaller sized terminals exhibiting higher convergence would endow the thalamic neurons
with unique RFs. This difference in convergence may explain the observation that pulvinar neural
spike rates reflect confidence by which a perceptual judgement is made (Komura et al. 2013) rather
than the perceptual category reflected by their parietal cortical targets (Kiani & Shadlen 2009). In
addition, this difference would explain the contextual signals observed in some pulvinar circuits
(the context would be a thalamic computation that involves convolving multiple cortical signals
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Figure 3 (Figure appears on preceding page)

Input-output diversity of thalamic neurons gives rise to multiple thalamic circuits. (a) Schematic comparison
of lemnothalamic (yellow) and collothalamic (orange) regions in mammals and reptiles. Note the massive
expansion of the lemnothalamic regions in the mammalian brain. Adapted from Butler (2009) with
permission from Springer. (b) Thalamic neurons have diverse patterns of terminal axonal arborization in the
cortex. Within the visual cortex, LGN neurons have dense, focal terminals in the upper layers of the visual
cortex (Usrey et al. 1992). By contrast, pulvinar and MD neurons have multiple focal terminals [adapted
from Rockland et al. (1999) with permission from the authors] and diffuse axonal terminals throughout the
cortex [adapted from Kuramoto et al. (2017) with permission from Wiley]. (c) Thalamic circuits can be
constructed on the basis of the nature of their inputs (e.g., corticothalamic terminal sizes), the pattern of
their axonal terminals in either the cortex or the striatum, and the source of the inhibition they receive. In
this way, the classical nuclear definition of the thalamus (colored circles) gives way to a more diverse
classification in which each nucleus can have circuits that exert different computations on the cortex. We
highlight the LGN [koniocellular (K), parvocellular (P), and magnocellular (M) pathways], pulvinar [medial
(Pm) and inferior (Pi)], and MD [central (MDc), medial (MDm), and lateral (MDl)] neurons, whose
input-output anatomy have been well characterized. Abbreviations: Ant, anterior nuclear group; DLA,
dorsolateral anterior nuclei; DLGN, dorsal lateral geniculate nucleus; DM, dorsal medial nuclei; LGN,
lateral geniculate nucleus; LP, lateroposterior nucleus; MD, mediodorsal nucleus; Med, medial nuclear
group; MGB, medial geniculate body; MP, nucleus medialis posterior; Po, posteromedial; Pul, pulvinar; RI,
rostral intralaminar nuclei; Rot, nucleus rotundus; Vent, ventral nuclear group.

impinging on an individual neuron) (Roth et al. 2012). Convergence may also explain why MD
neurons temporally tile delay periods of working memory and could be the reason why such rep-
resentation lacks categorical tuning found in their prefrontal cortex (PFC) targets (Schmitt et al.
2017).

Inhibitory inputs to the thalamus are almost as diverse as excitation and may form another axis
of defining mammalian thalamic function. All thalamic territories receive inputs from the thalamic
reticular nucleus (TRN). A subset of these territories also receive inhibition from an extrathalamic
system composed of a group of inhibitory forebrain and midbrain nuclei (including basal ganglia,
ventral pallidum, zona incerta, anterior pretectum, and pontine reticular formation) (reviewed in
more detail by Halassa & Acsady 2016). Unlike reticular inputs that control overall rate, these
extrathalamic nuclei exert a powerful inhibitory impact that likely controls thalamic spike timing.

Altogether these studies suggest that different thalamic nuclei receive anatomically different
sources of excitatory or inhibitory inputs depending on the computations they perform. We
propose that thalamic circuits can be constructed with different combinations of the anatomical
features discussed above (Figure 3c). For example, the primary sensory thalamus receives neither
cortical L5 nor extrathalamic system inputs. The combinatorial nature of these features makes the
thalamus a mosaic-like structure that may endow it with highly diverse functional properties that
generate a variety of computational state variables capable of affecting cortical function. Therefore,
we stress that a functionally meaningful classification of thalamic circuits is unlikely based on a
nuclear organization but rather on clusters along the structural features (Figure 3c). Efforts to
map thalamic connectivity at the single-cell resolution hopefully aid in this quest (Lerner et al.
2016, Paul et al. 2017, Phillips et al. 2017).

PHYSIOLOGICAL DETERMINANTS OF THALAMIC COMPUTATIONS:
SPIKING AND SYNAPTIC PROPERTIES

In addition to the anatomical features outlined in the previous section, thalamic neurons have
physiological characteristics that can be classified into spiking and synaptic features. The best-
known spiking feature of thalamic neurons is their ability to produce high-frequency (>100 Hz)
sodium spikes (burst discharges) driven by a slow depolarization caused by calcium influx from
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low-voltage-activated T-type calcium channels ( Jahnsen & Llinás 1984). These T-type calcium
channels inactivate rapidly at more depolarized membrane potentials, permitting neurons to en-
code inputs as either bursts or tonic spikes depending on their membrane potential. In particular,
inputs arriving when the membrane is hyperpolarized trigger a burst of sodium spikes. In con-
trast, inputs arriving at more depolarized potentials, where T-type calcium channels are inactive,
generate tonic sodium spikes (Zhan et al. 2000).

In the sensory thalamus, burst spiking was originally detected in low arousal states, such as
sleep and anesthesia (Steriade et al. 1993), but numerous studies across a variety of species have
shown that burst spiking could be an efficient way to relay information during alert wakefulness
(Ramcharan et al. 2000, Sherman 2001). In fact, the frequency of burst spiking within the LGN
varies with statistics of the visual stimulus (Lesica & Stanley 2004). Furthermore, the timing of
the burst onset, the number of spikes in a burst, and the duration of the burst can each carry
distinct sensory information (Butts et al. 2010, Gaudry & Reinagel 2008, Lesica & Stanley 2004,
Reinagel & Reid 2000, Reinagel et al. 1999). Hence, burst-tonic spiking may be an effective
method for thalamic neurons to multiplex and transmit information to the cortex. In support of
this idea, studies have shown that burst spiking rectifies signals more strongly than tonic spiking
does (owing to the nonlinearity of the calcium spike) and results in a higher signal-to-noise ratio,
improving stimulus detectability (Guido et al. 1995, Whitmire et al. 2016). By contrast, tonic
spiking preserves response linearity and permits linear summation of inputs, which in the LGN,
is crucial for preserving RF structure from retinal ganglion cells. Taken together, these studies
propose that by switching between burst and tonic spiking modes, the sensory thalamus controls
not only how much but also what type of information is conveyed to the cortex.

Thalamic bursting is limited not only to the sensory system. A recent study of the motor
thalamus, the ventrolateral nucleus (VL), found that inputs from the medial globus pallidus (GPm)
of the basal ganglia induced burst spiking in the VL by activating T-type calcium channels (Kim
et al. 2017). It has been proposed that projections from the GPm to the VL terminate actions
requiring locomotion; therefore, bursts in the VL induced by the GPm are decoded by the motor
cortex as a stop signal (Kim et al. 2017). Similarly, bursting in the MD suppresses the extinction
of expressed fear in mice (Lee et al. 2011). This finding is consistent with the notion that bursts
encode information in an all-or-none manner and can have a stronger impact on their targets than
tonic spiking can (Sherman 2001).

If the different thalamic firing modes do indeed multiplex different forms of information,
then the cortex must be able to decode and separate this information (Mease et al. 2017). This
ability must depend on the biophysical properties of the thalamocortical synapse. In particular,
these synapses can exhibit either short-term synaptic facilitation or short-term depression, which
enhance or diminish the postsynaptic effect of thalamic bursting, respectively (Fuhrmann et al.
2002, Tsodyks et al. 1998). Therefore, cortical decoders, which take advantage of these different
forms of plasticity, should be able to demultiplex information contained in thalamic bursts (Naud &
Sprekeler 2017). Another possibility is that the cortex decodes thalamic inputs through the recruit-
ment of different inhibitory mechanisms (Berger et al. 2010). For example, parvalbumin-expressing
cells receive depressing synaptic inputs (Karnani et al. 2016), whereas somatostatin-expressing
Martinotti cells receive facilitating inputs (Fino & Yuste 2011, Lee & Huguenard 2011). As a result,
thalamic bursts may recruit Martinotti cells and tonic spikes may recruit parvalbumin-expressing
cells, which would in turn have different effects on cortical computations (Tremblay et al. 2016).

Altogether these anatomical and biophysical properties suggest that the thalamus could be a
modular building block in which specific thalamic computations arise as a result of three factors:
the type of input that thalamic neurons receive, how these inputs are translated into burst and tonic
spiking, and how spikes from these thalamic neurons are then decoded in the cortex by different
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thalamocortical synapses. This modularity is especially beneficial for cognition, as it confers the
thalamus with the ability to perform flexible computations that adjust to changing behavioral and
contextual demands.

A PATH TOWARD A THEORY OF THALAMIC FUNCTION

Our goal for a theory of thalamic function is to explain the numerous micro- and macroscopic
neural observations, both within the thalamus and across its interactions with other regions. This
theory should also intuitively answer the question, What does the thalamus do? Such theoretical
goals are distinct because they take different perspectives, one neural and one cognitive. For
example, explaining the meaning of incoming thalamic spikes from the perspective of a cortical
neuron does not necessarily provide a satisfactory answer for their role in recognizing a face
or inferring another person’s intention. Achieving both goals requires a bridge between neural
hardware and cognitive outputs (thoughts and behaviors), which can be achieved through an
intermediate description—the neural algorithm (Peebles & Cooper 2015). Therefore, we think
elucidating the neural algorithms implemented by thalamic circuits is of utmost importance toward
our understanding of thalamic functions.

So, what is an example of a neural algorithm? One well-studied example is visual object recog-
nition. Primates can recognize objects regardless of color, size, luminance, background, or viewing
angle. This remarkable capacity for identification is posited to be an untangling of a specific object
manifold in a high-dimensional representational space (DiCarlo & Cox 2007), which at lower
levels of processing (e.g., the retina) would be completely entangled with many other objects
represented as raw pixel information (Figure 4a). This computationally challenging problem can
be efficiently solved by making the simple assumption that complex nonlinear transformations
can arise from simple computations applied in a series (DiCarlo et al. 2012) (Figure 4b).
In support of such a model, the Gabor wavelet RFs of V1 neurons can be formed from pooled
center-surround LGN RFs spanning a particular orientation (De Valois & De Valois 1980, Hubel
& Wiesel 1962). Therefore, this simple function is thought to underlie the ability to detect edges
in a luminance-invariant manner. With the use of similar transformations, and based on the notion
that the ventral visual stream is hierarchically organized (Felleman & Van Essen 1991), object
recognition can arise through a series of convolution operations followed by output nonlinearity,
such as divisive normalization, that render visual representations increasingly tolerant to changes
in viewing angle and therefore linearly decodable by object identity classifiers (Yamins & DiCarlo
2016) (Figure 4b). Variations of these hierarchical convolutional neural networks (HCNNs) have
been effective at predicting neural responses not only in the ventral stream (Cadieu et al. 2014) but
also in the auditory system (Yamins & DiCarlo 2016). In fact, this algorithmic structure has been
fundamental for computational vision, and recent advances in coupling artificial HCNNs with
more efficient learning algorithms have given rise to the revolution of machines that are almost
on par with humans in their ability to recognize objects (Hassabis et al. 2017, LeCun et al. 2015).

Despite such success, these deep HCNNs perform poorly in conditions of perceptual ambigu-
ity, where meaning has to be inferred from either a broader visual context or associated nonvisual
cues that depend on memory (Kok et al. 2013). An increasingly influential framework of how
the brain deals with and adjusts to these conditions of ambiguity is predictive coding, which
proposes that the brain actively tries to predict or infer what its sensory inputs are rather than
passively registering them (Friston & Kiebel 2009). The ability to perform this active inference is a
hallmark of intelligence (Griffiths & Tenenbaum 2006). Predictive coding relies on an internal
model, which endows the brain with the ability to simulate the physical (or social) world, describing
the dynamic relationship between behaviorally relevant objects (or events). Such an ability allows
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the brain to generalize known action-outcome relationships to ones that had not been previously
learned (Johnson-Laird 2010, Lee 2015, Shadlen & Shohamy 2016, Tolman 1948).

In essence, the internal model provides a mapping of how causes (x) generate sensations (A),
and by simply inverting this model, via Bayes’s theorem (Equation 1), the brain is able to infer the
most likely causes of its sensory inputs (known as the likelihood function).

p(A|x)︸ ︷︷ ︸
posterior probability

= p(x|A)p(A)
p(x)

∝ p(A)︸︷︷︸
prior probability

L(x; A)︸ ︷︷ ︸
Likelihood function

1.

Within this Bayesian framework, neural activity encodes beliefs (or posterior probability distri-
butions) over states of the environment that cause sensation, and predictive coding provides a
framework to reduce the uncertainty inherent in the sensory information that the brain samples.
In particular, when information is ambiguous, existing belief states have to be tracked and the
internal model dynamically updated with newly accumulated evidence (Haefner et al. 2016). This
can be achieved with a Bayesian observer model, or a predictive Kalman filter, which estimates
a new belief state given the sensory or environmental evidence and the current state ( Jordan &
Rumelhart 1992, Wolpert & Miall 1996). These new state estimates can then be used to generate
new predictions, and this process continues recursively to produce better predictions with each
new piece of sensory evidence. A central component of a Bayesian observer is its ability to create
an estimate of the stimulus distribution (Mlynarski & Hermundstad 2017), which it derives from
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Figure 4 (Figure appears on preceding page)

Neuronal algorithms and computational architectures. (a) Object recognition can be thought of as untangling two object manifolds (red
and blue lines, respectively). Here, in pixel space (i.e., raw pixel statistics), both red car and blue car manifolds are highly intertwined and
cannot be easily separated. Processing through a cascade of LN transformations separates these object manifolds such that a classifier
(dashed black line) can easily discriminate between the two objects in a viewing-angle-invariant manner. (b) Hierarchical organization of
different visual processing stages. Processing along the ventral visual stream can be described as a cascade of LN transformations,
starting with raw pixel information in RGCs, with each cortical area acting as an independent layer. As information ascends the
hierarchy, increasingly more complex features, such as edges, contours, parts of objects, and eventually the object itself, are extracted
from the image. Information not only flows forward but is also fed back (dashed arrow) to previous stages. These LN transformations
that are applied between stages are relatively stereotyped and involve filtering with a linear filter (of increasing complexity) followed by
thresholding, pooling, and normalization across neurons in that layer. Adapted from Yamins & DiCarlo (2016) with permission from
Springer Nature. (c) A Picasso face (left), when taken out of the context of a Pablo Picasso painting, is highly irregular compared with
what most people consider a normal-looking face (right). (d) An observer model (Kalman filter) updates state variables using prediction
errors. (e) A biological implementation of a Kalman filter involving feedback interactions between the cortex, the TRN, and the
thalamus. ( f ) Schematic of a typical cortical neuron whose firing rate (ri) can be expressed as a weighted sum of inputs arriving at two
different compartments. α and β are nonlinear gain functions that can selectively alter the integration of each set of inputs (e.g.,
recurrent versus feedforward inputs in this case), while the function f represents the nonlinear spike generation function. We propose
that unlike LGN-like inputs, which can serve as a rate parameter (rk) that drives and specifies the RF of this neuron under certain
conditions, MD-like thalamic inputs selectively alter the excitability of an entire compartment that receives intracortical recurrent
connections (the α term in the weighted sum equation). Other thalamic inputs may function in a manner similar to the MD-like inputs
but on a different compartment, thereby changing the selectivity of the neuron from being driven by locally recurrent inputs to others
originating elsewhere (the β term). In this way, different thalamic inputs can have contrasting effects on which inputs are used by a
cortical neuron to construct its own RF. For our formulation to fully make sense, the α and β parameters would have to be linked in
some manner; however, this is beyond the scope of this review. (g) Schematic illustrating the potential mechanisms by which MD-like
thalamic inputs alter the gain of recurrent inputs. First, these thalamic inputs can alter dendritic integration by providing
branch-specific excitation or by altering plasticity rules in a compartment-specific manner (Losonczy et al. 2008). Second, these
thalamic inputs could also recruit different subtypes of inhibitory neurons, such as vasoactive intestinal peptide–expressing (VIP),
resulting in branch-specific disinhibition via somatostatin-expressing (SST) neurons (Muñoz et al. 2017). Abbreviations: DoG,
difference-of-Gaussians operation; HCNN, hierarchical convolutional neural network; IT, inferotemporal area; L, lateral; LGN,
lateral geniculate nucleus; LN, linear–nonlinear operation; MD, mediodorsal nucleus; RGC, retinal ganglion cell; TRN, thalamic
reticular nucleus; V1–4, visual cortical areas 1–4.

the greater context in which that stimulus occurs (see sidebar titled Thalamic Neurons Perform
Forward Inference to Update Belief Functions for details). Within a typical context, elements
(objects or episodes) can be related by specific spatial or temporal relationships (Bar 2004). For
example, if one is viewing real human faces at a coffee shop, the visual context would make it highly
surprising to find an ear between two eyes, resulting in large prediction errors. However, such
an observation would be less surprising when viewing paintings by Pablo Picasso (Figure 4c).
In this framework, visual context (or gist, as it is more commonly called) defines a likelihood
function that relates the spatial relationship between the typical subparts of a face, which varies
depending on whether a natural face or a face painted by Picasso is viewed (Biederman et al.
1982). In contrast, when crossing the street in the United States, one automatically looks to
their left, whereas in the United Kingdom one instinctively looks to their right. Here, the con-
text is based on explicitly taught rules that depend on social norms rather than on the statistical
structure of the physical world. Therefore, by having explicit representation of such contextual
frames, a Bayesian observer can reduce uncertainty in the predictions of sensory inputs by recur-
sively updating the beliefs the brain has of these inputs (Bar & Ullman 1996, Oliva & Torralba
2007).

How can we relate these processes to the role of the thalamus in cognitive function? The
Bayesian observer represents a biologically plausible scheme for updating cortical beliefs (or ex-
pectations) about the environment with sensory samples. In particular, systems that encode or
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THALAMIC NEURONS PERFORM FORWARD INFERENCE TO UPDATE BELIEF
FUNCTIONS

Assume that at some time t and in some environment or context (θ t), a thalamic neuron gets input from a cortical
neuron (firing rate: yt) in response to some stimulus (xt). Assume also that this neuron has access to history of the
past estimates of the environment (θ̂t), which it uses to construct its belief of the current state of the environment.
In a dynamic environment, for example, θ t changes stochastically over time; hence, past estimates (θ̂t) provide an
estimate of how these changes occur. Using this information, the thalamic neuron can then compute the likelihood
of this response conditioned on the current stimulus by marginalizing over past stimuli (x̂) as follows:

p(yt |xt , θ̂t)︸ ︷︷ ︸
Likelihood

=
∫

p(yt |xt , x̂, θ̂t)︸ ︷︷ ︸
Stimulus→Response mapping

p(x̂|θ̂t)︸ ︷︷ ︸
History

d x̂. 1.

Using Bayes’s rule, one can infer the identity of this stimulus from the response and past estimates as follows:

p(xt |yt , θ̂t)︸ ︷︷ ︸
inferred stimulus

=

Likelihood︷ ︸︸ ︷
p(yt |xt , θ̂t)

Stimulus prior︷ ︸︸ ︷
p(xt |θ̂t)

p(yt |θ̂t)
. 2.

Working as an optimal Bayesian observer, a thalamic neuron can then use this inferred stimulus identity and
accumulated cortical neural responses ( ŷt−1) to compute its belief about the current state of the environment. This
can be written as the following posterior probability:

p(θt |̂yt−1, θ̂t )︸ ︷︷ ︸
Posterior of environment

(estimated state)

∼
∫

p(xt |yt , θ̂t )︸ ︷︷ ︸
Inferred stimulus

p(xt |θt)︸ ︷︷ ︸
Stimulus probabilty

p(θt |̂yt−1, θ̂t−1)d xt︸ ︷︷ ︸
Previous posterior

, 3.

p(θt+1| ŷt , θ̂t)︸ ︷︷ ︸
Updated posterior

(new state)

=
∫

p(θt+1|θt)︸ ︷︷ ︸
Environmental dynamics

p(θt | ŷt , θ̂t)︸ ︷︷ ︸
Previous posterior
(estimated state)

dθt . 4.

Therefore, with access to the posterior distribution and a model of environmental dynamics, thalamic neurons
can update this posterior distribution to form predictions of the future state of the environment. This information,
when propagated back to the cortex, will be crucial for predictive coding, in particular the computation of prediction
errors between expected and unexpected stimuli.

mediate a contextual updating of belief states must receive convergent projections from large re-
gions of the cortex, specifically from areas involved in encoding prediction errors (e.g., the frontal
areas), reciprocate divergent projections back to these areas, and mediate some form of gain con-
trol over these areas (Kanai et al. 2015). As we have described above, the thalamus, particularly
the pulvinar and the MD, meets all these requirements. By integrating inputs from many different
cortical areas (Mitchell & Chakraborty 2013, Shipp 2004), these thalamic circuits can compute
likelihood functions on the basis of a broader cortical context (Figure 4d,e). In turn, the outputs
from these thalamic nuclei can update cortical posterior probabilities depending on the regions
they innervate by altering either synaptic gain (Figure 4f ) or functional connectivity between
neurons in that region (O’Reilly et al. 2017, Purushothaman et al. 2012, Schmitt et al. 2017).
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Therefore, as a Bayesian observer, the thalamus would have a central role in predictive coding by
encoding expectations and thereby reducing the uncertainty of cortical predictions.

Recent neurophysiological studies indicate that the pulvinar indeed fulfills its role as a Bayesian
observer. In contrast to the LGN, whose RFs are the building blocks for V1 RFs, pulvinar neu-
rons have broad RFs that are sensitive not only to luminance and contrast changes but also to
task-relevant variables (such as attention or decision confidence) (Komura et al. 2013). Pulvinar
neurons project diffusely to many higher-order visual areas and prefrontal cortical areas, and LGN
projections are highly retinotopically organized (Seabrook et al. 2017). Owing to this diffuse con-
nectivity and large RFs, the pulvinar likely integrates over a much larger visual space than the
LGN does and therefore is optimized for conveying coarse contextual information rather than
structural visual information (McCotter et al. 2005, Oliva & Torralba 2006). Consistent with this
notion, the rodent analog of the pulvinar, the lateral posterior (LP) nucleus, conveys information
about running speed, specifically mismatches between optic flow and motor speed (Roth et al.
2016). These mismatches are akin to updated belief states about the flow of visual information. In
this way, the rodent LP could provide a common sensorimotor context in which stimuli appear
to V1, higher visual areas, and the cingulate cortex, priming them to detect unexpected stimuli
(Fiser et al. 2016). Furthermore, the result that pulvinar neurons are sensitive to the reliability
of perceptual decisions (Komura et al. 2013) suggests that they are specialized in encoding the
expected precision or confidence in the information used for perceptual decisions.

An important point is that unlike V1 RFs, which are optimized for feature extraction, neurons
within higher visual areas that receive pulvinar inputs have dynamic RFs that are optimized for
task-relevant functions other than sensory identification. For example, neurons within the lateral
intraparietal cortex (LIP) or middle temporal (MT) neurons have RFs that remap depending on
attentional demands (Marino & Mazer 2016). Therefore, circuits within the pulvinar and elsewhere
across the thalamus likely contribute to either computing or updating posterior distributions (about
both the stimulus and the environment) rather than to computing observations themselves.

Additional evidence for the role of the thalamus in cortical state updating can be seen in
planning goal-directed saccadic eye movements. Saccadic eye movements engage a broad network
of both cortical and subcortical structures (Schall & Thompson 1999) and have a critical role in
visuospatial attention (Bisley & Goldberg 2003, Ibos et al. 2013). The superior colliculus (SC),
located in the midbrain, has a critical role in generating saccadic eye movements. In addition
to the motor areas of the midbrain and the pons, which drive extraocular muscles, the SC also
projects to the MD neurons and the pulvinar (Sommer & Wurtz 2008). These SC-recipient MD
neurons in turn project to the frontal eye fields (FEF), a region of the frontal cortex involved
in visuospatial attention and eye movement planning. Using a combination of electrophysiology
and pharmacological inactivation, Sommer & Wurtz (2004a,b) demonstrated that SC-recipient
MD neurons carry an efferent copy of the motor signal, known as the corollary discharge. This
finding suggests that the MD contains an internal representation of the planned saccade direction,
which the FEF then uses to move its RFs. Formalizing this according to our framework discussed
above and in the sidebar titled Thalamic Neurons Perform Forward Inference to Update Belief
Functions, if θt+1 is the position of the eye after the planned saccade, then MD neurons can use the
history of the previous saccade (p(θt+1|θt)) to update its belief of the location of the visual field (the
posterior distribution; see Equation 4 in the sidebar). The idea is that the MD moves FEF RFs
preemptively to mitigate the sudden shift in the visual field that would be caused by a saccade, and
in doing so ensures stable vision (Sommer & Wurtz 2008). In support of this hypothesis, blocking
corollary discharge signals from reaching the FEF by inactivating the MD prevented the FEF
RFs from remapping to the location of the new saccade (Shin & Sommer 2012). Furthermore,
successful saccade planning depends on the behavioral context in which these saccade targets

176 Rikhye ·Wimmer · Halassa

Review in Advance first posted on 
April 4, 2018. (Changes may still 
occur before final publication.)

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
18

.4
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
A

us
tr

al
ia

n 
N

at
io

na
l U

ni
ve

rs
ity

 o
n 

04
/0

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



NE41CH09_Halassa ARI 26 March 2018 12:3

occur (Wyder et al. 2004). Similar to the pulvinar, the MD is highly sensitive to context and thus
perfectly positioned to multiplex motor commands from the SC with contextual information about
behavioral goals (Mitchell & Chakraborty 2013). How does this predictive remapping occur in
the FEF? On the basis of recent results (Schmitt et al. 2017), MD neurons might alter the effective
functional connectivity between specific ensembles of FEF neurons, which in turn would allow
them to remap their RFs by integrating corollary discharge with visual input (Rao et al. 2016).
As we explain in more detail below, this change in functional connectivity could be achieved by a
selectivity gating mechanism, where MD-like inputs enhance the effect of certain recurrent inputs
(Figure 4f,g).

Contextual modulation of cortical processing applies to nonmotor cognitive functions as well.
In particular, mapping a cue to the correct rule (e.g., looking to the left or to the right at a
pedestrian crossing) depends on the context in which the cue occurs (United States versus United
Kingdom). Unlike sensory context, this is a more abstract context that is taught and develops
with experience. Evidence that the thalamus is involved in this type of contextual control can
be seen in the interactions between the MD and PFC of the mouse during working memory.
For example, when holding an item, such as a cue that informs the mouse of a rule, in working
memory, PFC neurons show persistent activity at the level of the population, where each neuron
exhibits enhanced spiking at a brief moment in time during this working memory delay (i.e., a
temporal RF). The sequential progression of these temporal RFs across the population reflects the
algorithmic requirement of keeping in mind a particular task-relevant categorical representation.
Because individual PFC neurons categorically tuned to the same item would form a categorical
sequence, one neuron’s RF is determined by the spiking of another PFC neuron with an RF that
is temporally ahead in the sequence. As such, the mechanistic finding that local effective PFC
connectivity is enhanced during working memory is not surprising. What is surprising, however,
is that the source of this enhancement is the MD thalamus, and that individual MD neurons of the
mouse are also characterized by the lack of categorical tuning to the item. MD neurons are instead
sensitive to the task context and show firing rate modulation that scales with whether an animal
is engaged in the task or is in a different environment (Schmitt et al. 2017). Artificially activating
MD is sufficient for algorithmically engaging PFC neurons outside the task but does not influence
their task-relevant categorical preferences. In this scenario, MD neurons could update the belief
state of tuned PFC neurons, increasing their confidence of the associating a cue with a particular
rule.

Model-based inference relies on precisely tuned interactions between sensory information and
prior information. In particular, feedforward computations extract features and feedback com-
putations synthesize expectations based on an internal model (Bastos et al. 2012, Rao & Ballard
1999). The anatomy and laminar specificity of reciprocal connections between the thalamus and
the cortex, which we have described in the preceding section, fit in well with the computational
architecture implied by predictive coding. In particular, L5 neurons, which integrate inputs from
many cortical sources (Harris & Mrsic-Flogel 2013), could provide a prediction signal to the pul-
vinar or the MD, which it then uses to update the posterior distribution as described in the sidebar
titled Thalamic Neurons Perform Forward Inference to Update Belief Functions. Furthermore,
by acting through the TRN, input from other corticothalamic cells could either enhance or sup-
press these thalamic predictions depending on behavioral demand or brain state (Figure 4d).
Thalamic signals to the cortex could act in either an LGN-like manner by providing inputs that
directly drive cortical neurons to spike or an MD-like manner by enhancing the impact of other
inputs (e.g., locally recurrent ones) via selective gating mechanisms, such as compartment-specific
excitation or disinhibition (Figure 4f,g). Disinhibition may be achieved by recruiting vasoactive
intestinal peptide–expressing neurons that inhibit somatostatin-expressing neurons, which in turn
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would enhance the excitability of pyramidal neurons in a compartment-specific manner (Muñoz
et al. 2017) (Figure 4f,g). More generally, this compartment-specific gain control mechanism
could allow thalamic inputs to gate specific inputs to pyramidal neurons, allowing them to change
their circuit-wide algorithmic engagement depending on dynamically changing behavioral goals.
For example, pulvinar inputs to supragranular striate cortex appear to enhance the responsiveness
of these neurons to their preferred sensory inputs, suggesting that it may control the gain on feed-
forward excitatory drive (Purushothaman et al. 2012) (Figure 4g). [Note the precise biophysical
interpretation of this parameter may not be straightforward, as the LGN-like input (rk) we have
defined in Figure 4f may be provided by neighboring cortical neurons that share similar tuning
(Ko et al. 2011).] In summary, by recruiting subnetworks of cortical interneurons, different thala-
mic inputs can define task-specific ensembles within and across cortical microcircuits and, in doing
so, can configure the computational state of the cortex in a manner relevant to the behavioral goal.

Taken together, the studies that we have reviewed support the notion that both the pulvinar
and the MD are specialized in using contextual information to reconfigure cortical responses in a
task-dependent manner. Given the input-output diversity of each thalamic nucleus, each thalamic
nucleus possibly contains circuits dedicated to encoding contextual information, in addition to
circuits dedicated to other distinct computations (e.g., relaying information). Within this modular
framework, a common set of thalamocortical circuit operations (e.g., forward model, information
relay) whose deployment varies according to behavioral demands can form the basis for attention,
decision-making, and working memory.

CONCLUSIONS AND FUTURE DIRECTIONS

Most of our understanding of thalamic computations is derived from investigating LGN function,
leading to the commonly held notion that the thalamus simply relays information from the primary
sensory organs to the neocortex. Although this is likely the case for many thalamic circuits—even
in the pulvinar and MD—we argue along evolutionary, developmental, biophysical, behavioral,
and theoretical lines that the thalamus is well suited to perform much richer computations. In
particular, we propose that the thalamus functions as a Bayesian observer to derive forward pre-
dictive models on the basis of contextual information. Through these models, the thalamus can
then inform the cortex about expected outcomes or changes in key task-relevant variables. Thus,
we propose a revised model of the thalamus in which individual thalamic nuclei may contain vari-
ous microcircuits, each performing distinct computations. These microcircuits are defined by the
inputs they receive, their biophysical properties, and the cortical areas they target.

As highlighted above, we have only a rudimentary understanding of the role of the thalamus
in cognitive function. We conclude this review by proposing two key challenges to be addressed
going forward. The first is to identify other thalamic circuits and the second is to decipher the
computations they perform. Addressing these challenges is an endeavor that requires novel, well-
controlled behavioral paradigms, genetically accessible species that can perform highly cognitive
tasks, and the development of genetic tools that allow causal manipulation of neural circuit func-
tion. With their enhanced cognitive capacity over that of rodents, nonhuman primates may be
a tractable model system to identify new thalamic computations. Recent advances have permitted
the development of transgenic nonhuman primates (Sasaki 2015) and the successful application of
techniques such as calcium imaging (Seidemann et al. 2016) and optical perturbation of defined
cell types (Stauffer et al. 2016); however, current applications are limited.

Meanwhile, the genetic tractability of mice can still be leveraged by designing cognitively
challenging sensory attention tasks (Schmitt et al. 2017, Wimmer et al. 2015) or by training
them to make decisions from accumulated sensory evidence (Hanks et al. 2015). Together these
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techniques will be instrumental in broadening our understanding of the computations performed
by thalamic circuits.
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Muñoz W, Tremblay R, Levenstein D, Rudy B. 2017. Layer-specific modulation of neocortical dendritic
inhibition during active wakefulness. Science 355:954–59

Naud R, Sprekeler H. 2017. Burst ensemble multiplexing: a neural code connecting dendritic spikes with
microcircuits. bioRxiv https://doi.org/10.1101/143636

Naumann RK, Ondracek JM, Reiter S, Shein-Idelson M, Tosches MA, et al. 2015. The reptilian brain. Curr.
Biol. 25:R317–21

Oliva A, Torralba A. 2006. Building the gist of a scene: the role of global image features in recognition. Prog.
Brain Res. 155:23–36

Oliva A, Torralba A. 2007. The role of context in object recognition. Trends Cogn. Sci. 11:520–27
Orban GA. 2008. Higher order visual processing in macaque extrastriate cortex. Physiol. Rev. 88:59–89
O’Reilly RC, Wyatte DR, Rohrlich J. 2017. Deep predictive learning: a comprehensive model of three visual

streams. Cornell University Library. https://arxiv.org/abs/1709.04654
Paul A, Crow M, Raudales R, He M, Gillis J, Huang ZJ. 2017. Transcriptional architecture of synaptic

communication delineates GABAergic neuron identity. Cell. 171:522–39.e20
Paxinos G, Franklin KBJ. 2004. The Mouse Brain in Stereotaxic Coordinates. Houston: Gulf Professional

Publishing
Peebles D, Cooper RP. 2015. Thirty years after Marr’s vision: levels of analysis in cognitive science. Top. Cogn.

Sci. 7:187–90
Phillips JW, Schulmann A, Hara E, Liu C, Shields B, et al. 2017. A topographic axis of transcriptional identity

in thalamus. bioRxiv doi: 10.1101/241315
Pritz MB. 1995. The thalamus of reptiles and mammals: similarities and differences. Brain Behav. Evol. 46:197–

208
Purushothaman G, Marion R, Li K, Casagrande VA. 2012. Gating and control of primary visual cortex by

pulvinar. Nat. Neurosci. 15:905–12
Ramcharan EJ, Gnadt JW, Sherman SM. 2000. Burst and tonic firing in thalamic cells of unanesthetized,

behaving monkeys. Vis. Neurosci. 17:55–62
Ramsay ZJ, Ikura J, Laberge F. 2013. Modification of a prey catching response and the development of

behavioral persistence in the fire-bellied toad (Bombina orientalis). J. Comp. Psychol. 127:399–411
Rao HM, Mayo JP, Sommer MA. 2016. Circuits for presaccadic visual remapping. J. Neurophysiol. 116:2624–36
Rao RP, Ballard DH. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-

classical receptive-field effects. Nat. Neurosci. 2:79–87
Reinagel P, Godwin D, Sherman SM, Koch C. 1999. Encoding of visual information by LGN bursts.

J. Neurophysiol. 81:2558–69
Reinagel P, Reid RC. 2000. Temporal coding of visual information in the thalamus. J. Neurosci. 20:5392–400
Rockland KS, Andresen J, Cowie RJ, Robinson DL. 1999. Single axon analysis of pulvinocortical connections

to several visual areas in the macaque. J. Comp. Neurol. 406:221–50
Rohe T, Noppeney U. 2015. Cortical hierarchies perform Bayesian causal inference in multisensory percep-

tion. PLOS Biol. 13:e1002073
Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB. 2016. Thalamic nuclei convey diverse

contextual information to layer 1 of visual cortex. Nat. Neurosci. 19:299–307
Roth MM, Helmchen F, Kampa BM. 2012. Distinct functional properties of primary and posteromedial visual

area of mouse neocortex. J. Neurosci. 32:9716–26
Rouiller EM, Welker E. 2000. A comparative analysis of the morphology of corticothalamic projections in

mammals. Brain Res. Bull. 53:727–41
Rovo Z, Ulbert I, Acsady L. 2012. Drivers of the primate thalamus. J. Neurosci. 32:17894–908
Sasaki E. 2015. Prospects for genetically modified non-human primate models, including the common mar-

moset. Neurosci. Res. 93:110–15
Schall JD, Thompson KG. 1999. Neural selection and control of visually guided eye movements. Annu. Rev.

Neurosci. 22:241–59
Schmitt LI, Wimmer RD, Nakajima M, Happ M, Mofakham S, Halassa MM. 2017. Thalamic amplification

of cortical connectivity sustains attentional control. Nature 545:219–23
Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. 2017. Architecture, function, and assembly of the

mouse visual system. Annu. Rev. Neurosci. 40:499–538

182 Rikhye ·Wimmer · Halassa

Review in Advance first posted on 
April 4, 2018. (Changes may still 
occur before final publication.)

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
18

.4
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
A

us
tr

al
ia

n 
N

at
io

na
l U

ni
ve

rs
ity

 o
n 

04
/0

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://doi.org/10.1101/143636
https://arxiv.org/abs/1709.04654


NE41CH09_Halassa ARI 26 March 2018 12:3

Seidemann E, Chen Y, Bai Y, Chen SC, Mehta P, et al. 2016. Calcium imaging with genetically encoded
indicators in behaving primates. eLife 5:e16178

Shadlen MN, Shohamy D. 2016. Decision making and sequential sampling from memory. Neuron 90:927–39
Sherman SM. 2001. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 24:122–26
Shin S, Sommer MA. 2012. Division of labor in frontal eye field neurons during presaccadic remapping of

visual receptive fields. J. Neurophysiol. 108:2144–59
Shipp S. 2004. The brain circuitry of attention. Trends Cogn. Sci. 8:223–30
Sommer MA, Wurtz RH. 2004a. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from

superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol. 91:1381–402
Sommer MA, Wurtz RH. 2004b. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF

pathway in corollary discharge. J. Neurophysiol. 91:1403–23
Sommer MA, Wurtz RH. 2008. Brain circuits for the internal monitoring of movements. Annu. Rev. Neurosci.

31:317–38
Stauffer WR, Lak A, Yang A, Borel M, Paulsen O, et al. 2016. Dopamine neuron-specific optogenetic stimu-

lation in rhesus macaques. Cell 166:1564–71.e6
Steriade M, McCormick DA, Sejnowski TJ. 1993. Thalamocortical oscillations in the sleeping and aroused

brain. Science 262:679–85
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